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The paper examines the link prediction problem for directed multi-modal complex networks.
Specically, a hybrid method combining collaborative filtering and Triadic Closeness methods
is developed. The methods are applied to a sample of the GitHub network. Implementation
details are discussed, with a focus on design of a scalable system for handilng large data
sets. Finally, results of this new method are discussed with no significant improvement over
current methods.
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CHAPTER 1
Introduction

Many social, biological and information systems can be modeled as complex networks
(or graphs) where the nodes are individuals and the edges (or links) between nodes
represent interaction between the nodes. The term complex network is used to describe
graphs (consisting of nodes and edges) that exhibit non-trivial topological structure.
These networks often consist of real-world interactions, such as computer, social and
collaboration networks that cannot be modeled as a random graph[Ste10]. With the
growing popularity of online social networks (such as Facebook and Twitter) in recent
years, much research has been devoted to understanding these types of complex networks.
One area of that research is recommender systems: the problem of recommending
interesting content/users in the network. Examples of these systems used in production
include Twitter’s "Who To Follow" system [Pan13], LinkedIn’s "People You Might Know",
and similar recommendation in FaceBook. When modeled as a graph, recommender
systems become link predictors answering the question can the system predict removed
links in the remaining network? In this paper we explore the problem of link prediction
in complex networks, and apply the methods to a data set from the GitHub online
social collaboration network. A novel system for generating link predictions is discussed,
implemented and evaluated.

1.1 Online Social Collaboration Networks
A new type of social network that has been gaining popularity is the online social
collaboration network. Online social collaboration networks map social interactions
allowing users to collaborate toward some common goal. An example of this type of
network is GitHub 1. GitHub is a software collaboration web service built around the
git version control system. Software developers use GitHub to collaborate on software
projects, to share their projects, to interact with other developers/users, and to follow
what other users are working on. GitHub is perhaps the largest community of software

1 http://www.github.com

1
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developers in the world, with perhaps the largest collection of open source software
under active development. As we will see, this provides a very rich dataset for analysis.
In a more practical sense, improving recommender systems for the GitHub network can
help users find software projects and users with whom to collaborate faster and more
easily. This could lead to a more productive software development ecosystem.

1.2 Link Prediction For Directed Multi-Modal Networks - An Adaptive Hybrid Method
The goal of this thesis is to explore the link prediction problem, as applied to online
social collaboration networks. Much of the previous literature in this area focuses on
homogenous (single relationship) undirected social networks. We extend this research
to focus on heterogenous (multiple relationship type) or multi-modal directed social
collaboration networks, specifically the GitHub network. We duplicate the work done
previously in this area and develop a novel approach to link prediction, specifically an
adaptive ensemble method.

The remainder of this paper is outlined as follows:

Chapter 2 - Previous Work. A review of the literature in this field. We show how
link prediction fits into the recommender system literature and discuss how link
prediction methods have adapted as they are applied to evolving types of networks.

Chapter 3 - Methods. An examination of the data used for this project as well as an
in-depth explanation of the algorithms used for link prediction, in the context
of the graph traversal pattern, which is also explained in this chapter. A novel
approach for link prediction is proposed, a combined similarity and network
structure method. Implementation details involving graph data modeling and
graph databases are discussed.

Chapter 4 - Evaluation. This new recommender system is evaluated relative to similarity
based methods and network structure methods. Challenges of the present system
are discussed.

Chapter 5 - Summary. Areas of further research are discussed.
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CHAPTER 2

Previous Work

The link prediction problem for complex networks was best formalized by Kleinberg:
"Given a snapshot of a social network, can we infer which new interactions among its
members are likely to occur in the near future?" [LN07] It is this problem which we
address in this paper. We discuss how link prediction fits into the world of recommender
systems and provide a brief overview of the methods commonly used for the link
prediction program. We identify two distinctive types of link prediction algorithms:
similarity based algorithms and network based algorithms.

2.1 Recommendation As Link Prediction

Consider a bipartite graph of Users and Items where the edges of the network represent
purchase links: if a link exists between User 1 and Item x then User 1 has purchased
Item x. Recommender systems modeled on this type of data take the form of "users who
bought x also bought y", as often seen on online retail sites such as Amazon. For example,
in Figure 2.1 we see a bipartite graph as described above. An item recommendation
for User 1 takes the form of a predicted link in the network. This is an example of a
User-Item link prediction, however we could also predict links between Users based on
the structure of the network, similarity between User-Item preferences, or both. An
example of user recommendation is LinkedIn’s "Do You Know..." feature, which suggests
Users. These types of link prediction/recommender systems can be generalized as "Who
To Follow" recommender systems and it is this type of recommendation on which this
paper will focus [Pan13].

3



www.manaraa.com

2.2 Similarity-based Algorithms 4

Figure 2.1: Here we see an example of an item recommender system modeled as a graph
where the nodes are Users and Items and the edges indicate a purchse of an Item by a User.
When modeled this way recommendation takes the form a predicted link in the graph.

2.2 Similarity-based Algorithms
Similarity based methods rely on the computation of a user-user similarity metric, which
is then used to make recommendations. This is based on the homophily principle, that
users are more likely to be interested in users similar to them.[Ric11] Each pair of nodes
in the network is assigned a score S

uv

, which represents the strength of the similarity
between u and v. To generate predicted links, all unobserved links u,v are ranked based
on S

uv

, with the highest ranked selected as predicted links. Similarity metrics are often
calculated based on observed links in the networks, with the concept of overlapping
neighbors in the network being a common distinguishing characteristic. [Lu10]

Table 2.1: Common similarity metrics. Defintion of several commonly used similarity
metrics. Note that Pearson correlation and Cosine similarity make use of weighted edges,
while Jaccard is calculated without taking edge weights into account.

Metric Definition Description
Jaccard J(A,B) = |AflB|

|AfiB| Size of the intersection of neigh-
bors divided by the union of the
sets of neighbors

Pearson correlation
Pn

i=1(Xi≠X̄)(Yi≠Ȳ )ÔPn
i=1(Xi≠X̄)2

ÔPn
i=1(Yi≠Ȳ )2

A mean adjusted correlation coef-
ficient.

Cosine similarity
nP

i=1
Ai◊Bi

s
nP

i=1
(Ai)2◊

s
nP

i=1
(Bi)2

Cosine distance between two vec-
tors.
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If edge weights (often a User-Item rating) are available, the Pearson Coe�cient or
Cosine similarity are commonly used. For binary ratings the Jaccard metric is often
used. Table 2.1 shows the definition for these metrics.

When user preferences are taken into account (such as the User-Item purchase
network shown in Figure 2.1) to calculate the similarity metric the system is said to
make use of collaborative filtering. Collaborative filtering systems produce user specific
recommendations based on patterns of behavior observed from other users. Typically
this involves observing ratings of items and using either latent factor models or a
neighborhood based approach to generate item recommendations[Ric11]. With the rise
of social network analysis however, often instead of user-item recommendations, we are
more interested in generating user-user recommendations. User-user recommendations
are the focus of this project. The underlying assumption of collaborative filtering is that
of homophily: similar users like similar things. Collaborative filtering implementations
can be problematic when applied to a large dataset. Most methods require a large
sparse matrix for computation, the use of which is not always performant. Instead, the
problem can be modeled as a graph, and make use of the graph traversal pattern as an
alternative to the construction of a large sparse matrix [Rod10]. Consider for a moment
the time complexity involved in calculating the all-pairs User-User similarity metric
necessary for collaborative filtering. This is at best an O(n2) computation, depending
on the similarity metric being calculated. This obviously does not scale well to large
networks and so implementation details must be taken into account.

2.3 Network-based Methods
Network-based methods analyze the structure of the network to develop recommendations.
Example of this include PageRank [Pag], HITS [LN07], SALSA [Lem01], and Triadic
Closeness. The PageRank and HITS algorithms attempt to rank nodes in the network
by their relative importance, or centrality in the network. PageRank does this by
computing an eigenvector centrality, while HITS focuses on identifying nodes that can
be classified as authorities, forming important hubs in the graph. SALSA and related
methods use a more probabilistic approach and use random walks through the graph to
generate link predictions. Indeed the Twitter Who To Follow system is based on such a
method. [Pan13]. Other methods such as Triadic Closeness use patterns in the network
to generate recommendations.

2.3.1 Triadic Closeness

Triadic Closeness is based on the graph theory concept of triadic closure. Triadic closure
is the hypothesis that for two nodes in a network u and v, the existence of an edge
between u, v is highly correlated with the overlap of u and v direct connections (neighbor
overlap). The Triadic Closeness method uses triad pattern detection to determine the
likelihood that a given triad pattern is likely to close in the network (that an edge will
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form from u to v). Triadic Closeness can be summarized as:

Triad Closeness = Number of closed triads
Number of potentially closed triads (2.1)

2.4 Directed Social Networks
There is an important distinction to note between undirected social networks and directed
social networks. Much of the literature has focused on undirected social networks only
[Lu10]. In fact the similarity metrics shown above are all based on undirected social
networks. A notable exception is the Triadic Closeness method described by Schall
[Sch14].

2.5 The case for a hybrid method
There is a clear gap in the literature making use of combined network based methods
with similarity based methods [Lu10]. My contribution to this field is to explore how
these methods can be combined to improve the accuracy of such recommendations. A
linear combination of a collaborative filtering similarity based approach and a network
based approach leveraging the use of directed networks is proposed, based somewhat
on the work developed in [Can08]. By combining a network-based method with a
similarity-based method we are able to capture more information about the structure of
the network and information about specific user preferences and actions. By taking into
account the proportion of edge types available for each user we are able to adjust the
weights for each method in the hybrid metric, making the method adaptive for each
user, based on the quantity of information available that describe each user’s actions in
the network. To enhance the e�ectiveness of the combined method we focus exclusively
on multi-modal networks. Multi-modal networks are a type of complex network that
contain multiple relationship types and/or multiple node types. Finally, we focus here
on making use of the graph traversal pattern. By modeling our data as a graph we
can e�ciently implement the methods discussed by traversing the graph, focusing on
a local portion of the graph, rather than complex and expensive calculations for the
entire network.
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CHAPTER 3

Methods

Here we describe the data used and detail the implementation of the link prediction
experiment. We first examine in detail two methods for link prediction using a sample
network: collaborative filtering using the Jaccard similarity metric and the Triadic
Closeness method. We then show how these two methods can be used together in a
hybrid predictor using adaptive weights. An experiment using data from the Github
social collaboration network is discussed. The data used in this experiment is examined.
Finally, implementation is discussed. We focus on the link prediction problem for a
partially observed network. We assume certain links are missing from the network and
attempt to predict the missing link(s), focusing on User-User edges.

3.1 Sample Network

Consider the network shown in figure 3.1. This is a sample network which was randomly
generated and does not represent any real world observed data. However, we shall refer
to this network to demonstrate the techniques used in this project. The sample network
contains two types of nodes: Users and Items. Each User can FOLLOW other Users.
This is represented as a User-User directed edge with the label :FOLLOWS. Similarly,
Users can express their interest in an Item with the :LIKES relationship (or edge).
This type of network structure is similar to those observed in social networks (such
as Facebook, or Twitter), but also in collaboration networks, such as Github. Since
the network has multiple types of nodes and edges it is referred to as a multi-modal

network[Ste10].

7
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Figure 3.1: This sample network will be used to demonstrate the methods used for link
prediction in this paper. This network demonstrates a random multi-modal network with
multiple types of nodes and edges.

3.2 Algorithms
For illustrative purposes we will work through three examples of link prediction algo-
rithms for the sample network shown above. First, using the collaborative filtering
method with the Jaccard similarity metric. We will use User-Item edges to identify
similar uses and generate recommendations based on those similarities. Next, we walk
through the Triadic Closeness method as described in [Sch14]. Using probabilities
observed from triad patterns we will generate link predictions and compare to those
created using collaborative filtering. Finaly, we propose a hybrid method that combines
collaborative filtering and Triadic Closeness using an adaptive weighting system. In the
context of the sample network we focus on predicting User-User :FOLLOWS edges only.

For the purposes of the next three sections we will consider link prediction for user J.
We proceed through each algorithm manually, ignoring some implementation details for
now that will explored in depth in the proceeding section.

3.2.1 Collaborative Filtering
Collaborative filtering is a method of generating recommendations based on the ho-
mophily principle: users who are similar are likely to be interested in similar items. It
is implemented by finding similar users, based on some similarity metric [Ric11]. Here
we will use User-Item edges as an indication of a User’s binary rating of an Item. The
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Jaccard metric is used to show a proportion of overlapping neighbors.

Similarity Metrics
The Jaccard index is used to identify similar users. For two users, a and b, let A and B
denote the sets of all users being followed by a and b, respectively. The Jaccard index is
therefore as defined in Equation 3.4.

J(A,B) = |A fl B|
|A fi B| (3.1)

In this context, Jaccard is defined as the intersection of the Items liked by a and b
divided by the union of the items likes by a and b. This results in a number between 0
and 1, indicating the strength of similarity between users a and b.

To generate recommendations for user J , we first must identify all friend-of-friend
nodes, that is nodes that share a neighbor Item in common with J . That gives us the
set {N}. Our possible recommendations are now reduced to N. We will now compute
the Jaccard similarity metric for the pair (J, N):

J(J,N) = |J fl N |
|J fi N | (3.2)

The intersection of J and N here is defined as all items that have an incoming :LIKES
edge from both J and N . Looking at the graph we can see that the intersection is Item2.
Similarly, we can look at the graph to find the items that compose the union of J and
N .

J(J,N) = |{Item2}|
|{Item2, Item4, Item5}| (3.3)

We are only interested in the size of the two sets, so we simply count the elements.

J(J,N) = 1
3 (3.4)

We can now predict the edge J æ N with weight 1/3. 1

As you can see, the collaborative filtering link prediction process for a given user x

1 If we were interested in predicting User-Item links, we could allow each similar user to vote for
other Items in which J might have an interest. We now take the top k nodes that have the highest
Jaccard score and allow each to vote for new outgoing links to form from J . Here we will select L
and recommend any outgoing links from L as destination nodes for predicted links emminating from
J . However, we are only concerned here with User-User edges.
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involves finding other users most similar to user x, then finding items those similar users
are most interested in. In this sense collaborative filtering can be thought of as very
similar to k-nearest neighbors, where the distance calculation is based on some similarity
metric.

3.2.2 Triadic Closeness

Graph theory proposes the concept of triadic closure, the hypothesis that the creation of
an edge between u and v is related to the degree of overlapping neighbors in u and v’s
respective networks. [Ste10] The concept of Triadic Closeness is an application of the
theory of triadic closure, specifically taking into account the directed nature of social
networks. For a given fully observed network, Triadic Closeness can be thought of as the
ratio of the number of closed triads to the number of potentially closed triads[Sch14]. A
triad consists of three nodes u, z, v where edges (ignoring direction) u,z and z,v exist.
Edges between u and v may exist, however the concept of triadic closure posits that an
implicit connection exists between u and v.

Algorithm 1 Link prediction algorithm for Triadic Closeness
1: input : G(U, E), x, N
2: usersSample Ω getRandomUsers(U,x)
3: results Ω {}
4: for eachuserinusersSample do

5: validationEdge Ω getRandomEdge(G, user)
6: removeEdge(validationEdge,G)
7: triads Ω getTriads(user, G)
8: pred Ω {}
9: for u, v in triads do

10: tc Ω calcTC(u,v,G)
11: pred Ω pred + {tc, u, v}
12: end for

13: predictions Ω topXSortedByTC(pred, N)
14: hit Ω isvalidationEdgeinpredictions?
15: addEdge(validationEdge, G)
16: results Ω results + {hit, pred, u, v, validation

e

dge}
17: end for

18: return results
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Figure 3.2: For any given triad (u, z, v) there is an implicit link between u and v. Triadic
Closeness is a measure of the strengt of this implicit link.

In a directed network there are 27 distinct configurations, or patterns that a triad
can take on. Figure 3.3 shows the 9 unique open triad patterns. Table 3.1 shows triad
patterns that are open, that is no connection exists between nodes u and v. The pattern
identifications (T 01, T02...) are taken from[Sch14]. Any open triad can be closed in one
of three possible ways: u Ω v, u æ v, or u ¡ v.
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Figure 3.3: Here all possible open triad patterns are shown. Each of the nine unique
triad patterns are labled using an identifier Txy where y indicates which of the nine open
patterns the triads corresponds and x indicates if the triad is open (0), if the triad is closed
with an edge u æ v (1), if the triad is closed with an edge u Ω v (2) or if the triad is closed
with two edges u ¡ v (3). This triad pattern identification scheme is used when computing
Triadic Closeness.

Figure 3.4: A triad is considered to be closed if an edge exists between u and v. In the
triad pattern ID, Txy, x identifies how the triad is closed.

Figure 3.4 shows the three distinct ways in which an open triad can be closed. Either
the creation of an edge u æ u, the creation of an edge u Ω v, or the creation of two
edges u æ v and u Ω v. In terms of the triad pattern id, the first digit indicates if the
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triad is open (0), closed with an edge u æ v (1), closed with an edge u Ω v (2), or
closed with two edges u æ v and u Ω v (3). With this nomenclature we are now able
to represent each possible triad pattern with a two digit identifier.

TC
uv

=
X

zœ≈ (u)fl≈ (v)
wP (u, v, z) ◊ w(z) (3.5)

As shown in Equation 3.5, triadic closeness for u,v is defined as the sum of wP times
w(z) over all triads in which u is a member in the network. The weights wP and w(z)
are defined below.

wP (u,v,z) = F (T (u,v,z) + 10) + F (T (u,v,z) + 30)
F (T (u,v,z)) (3.6)

The function T (u,v,z) retrieves the triad pattern ID (as shown in Figures 3.3 and 3.4)
of the triad (u,v,z), while the function F (...) retrieves the frequency of a given triad
pattern in the network. Thus, wP can be be thought of as the proportion of triads of a
given pattern that were closed with a link u æ v.

TC
uv

=
X

zœ≈ (u)fl≈ (v)
wP (u,v,z) ◊ 1

k
z

(3.7)

w(z) is defined as the inverse of the degree of z. This weight is meant to express the
significance of edges u ¡ z and z ¡ v relative to the number of edges connecting z
throughout the entire network.

Having collected these triad pattern frequencies, we can now generate recommendations
as we did above for user J .

The first step is to identify all open triads of the form u,z,v where J is u and no link
between u,z exists. Those triads are:

• (J,F,G)
• (J,I,N)
• (J,P,Q)

Thus the three possible recommendations that we might generate are J æ G, J æ N ,
and J æ Q. To determine the rank of the predictions, we must calculate the triadic
closeness metric for the pairs (J,G), (J,N) and (J,Q).

TC
JG

=
X

zœ≈ (J)fl≈ (G)
wP (J, G, z) ◊ w(z) (3.8)
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Table 3.1: Open triad pattern frequency in the sample network. This frequencies are used
to compute Triadic Closeness.

ID Pattern Count
T06 u æ z Ω v 20
T04 u æ z æ v 14
T08 u Ω z Ω v 14
T02 u ¡ z æ v 8
T07 u Ω z ¡ v 8
T09 u Ω z æ v 8
T03 u æ z ¡ v 3
T05 u ¡ z Ω v 3

Table 3.2: Closed triad pattern frequency in the sample network.

ID Pattern Count
T18 u Ω z Ω v Ω u 3
T14 u æ z æ v Ω u 2
T16 u æ z Ω v Ω u 2
T19 u Ω z æ v Ω u 2
T15 u ¡ z Ω v Ω u 1
T17 u Ω z ¡ v Ω u 1
T24 u æ z æ v æ u 3
T26 u æ z Ω v æ u 2
T28 u Ω z Ω v æ u 2
T29 u Ω z æ v æ u 2
T22 u ¡ z æ v æ u 1
T23 u æ z ¡ v æ u 1
T34 u æ z æ v ¡ u 1
T38 u Ω z Ω v ¡ u 1

TC
JG

= wP (J, G, F ) ◊ w(F ) (3.9)

wP (J,G,F ) = F (T (J,F,G) + 10) + F (T (J,F,G) + 30)
F (T (J,F,G)) (3.10)
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We can see that T(J,F,G) = T03, so we have:

wP (J,G,F ) = F (T03 + 10) + F (T03 + 30)
F (T03) (3.11)

wP (J,G,F ) = F (T13) + F (T33)
F (T03) (3.12)

wP (J,G,F ) = 0 + 0
3 (3.13)

wP (J,G,F ) = 0 (3.14)

TC
JG

= 0 (3.15)

Next for J,N:

TC
JG

=
X

zœ≈ (J)fl≈ (G)
wP (J, N, z) ◊ w(z) (3.16)

TC
JG

= wP (J, I, N) ◊ w(I) (3.17)

wP (J,G,F ) = F (T (J,I,N) + 10) + F (T (J,I,N) + 30)
F (T (J,I,N)) (3.18)

We can see that T(J,I,N) = T08, so we have:

wP (J,G,F ) = F (T08 + 10) + F (T08 + 30)
F (T08) (3.19)

Using tables 3.1 and 3.2 we can substitute the triad frequencies.

wP (J,G,F ) = 3 + 1
14 (3.20)
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wP (J,G,F ) = 0.286 (3.21)

w(I) = 1/3 (3.22)

TC
JN

= 0.286 ◊ 1/3 = 0.095 (3.23)

and finally, calculate TC(J,Q):

TC
JQ

=
X

zœ≈ (J)fl≈ (Q)
wP (J, Q, z) ◊ w(z) (3.24)

TC
JG

= wP (J, P, A) ◊ w(Q) (3.25)

wP (J,P,Q) = F (T (J,P,Q) + 10) + F (T (J,P,Q) + 30)
F (T (J,P,Q)) (3.26)

We can see that T(J,P,Q) = T04, so we have:

wP (J,P,Q) = F (T04 + 10) + F (T04 + 30)
F (T04) (3.27)

wP (J,P,Q) = 2 + 0
14 (3.28)

wP (J,P,Q) = 0.143 (3.29)

w(P ) = 1/3 (3.30)
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TC
JQ

= 0.143 ◊ 1/3 (3.31)

TC
JQ

= .048 (3.32)

We can then sort our recommendations by TC and the most likely edge we will
recommend is J æ Q.

3.2.3 An adaptive hybrid method
Each of the two methods described above do not fully capture the information needed
to make robust recommendations:

• Collaborative filtering captures similar items to identify nodes that a user might
find interesting, however the model does not capture any probabilistic information
to inform how likely the link is to form, given the relevant/similar node.

• While Triadic Closeness captures probabilistic information that informs how likely
certain triad patterns are to close, it is not informed by any user rating observations.
This results in predictions based solely on patterns and ignoring content similarity.

We next examine how these two methods can be combined to improve link prediction.
[Lu2010] identifies such hybrid methods as a way to improve accuracy of link prediction
beyond what any one algorithm might be able to obtain.

While such an hybrid method could be defined as a simple weighted average with fixed
weights as described in [Can08], we instead propose an adaptive weighting mechanism
to take into account the information available for each component of the hybrid metric.

Consider:

AEM
u,v

=
X

cœcomponents

c(u, v) ◊ w
c

(u,v) (3.33)

Using Jaccard and Triadic Closeness, this becomes:

AEM
u,v

= J(u,v) ◊ w
J

(u,v) + TC(u,v) ◊ w
T C

(u,v) (3.34)

Both Jaccard and Triadic Closeness metrics are in the range {0,1} so we do not need
to normalize. J(u,v) is described above in Equation XX and TC(u,v) in Equation 3.34,
but what values to assign the weights w

J

and w
T C

? Rather than assigning equal weights,
the weights should be assigned according to the proportion of our confidence in each
metric. Since we are dealing with a multi-modal network, each metric is calculated
using a certain relationship type. Here Jaccard is calculated using User-Item :LIKES
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relationships, while Triadic Closeness is calculated using only User-User :FOLLOWS
relationships. For a given user, u we can use the proportion of total out-edges of each
relationship type as the weight for the corresponding metric.

For example:

w
J

(u,v) = count(u ≠ {: LIKES}≠ >)
count(u ≠ {ú}≠ >) (3.35)

w
T C

= count(u ≠ {: FOLLOWS}≠ >)
count(u ≠ {ú}≠ >) (3.36)

Where count(u ≠ {: LIKES}≠ >) is the number of outgoing :LIKES edges for User
u and count(u ≠ {ú}≠ >) is the total number of outgoing edges (both :LIKES and
:FOLLOWS).

We can think of each outgoing edge as a rating or vote from that user, expressing
their interest. If for a given user we observe 10 :FOLLOWS edges and only 1 :LIKES
edge, we have greater confidence in the accuracy of the Triadic Closeness metric since
we have more information about User u’s preferences.

3.3 Data

Figure 3.5: GitHub data model as a labeled property graph.
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GitHub 1 is an online social collaboration network built around the Git version control
system. GitHub allows software developers to share and collaborate on software projects.
Many open-source software projects are hosted on GitHub and use GitHub as their
primary development and distribution platform. GitHub also has a social component:
users are able to follow other users to receive updates about user activity. This
combination of social and collaboration components make GitHub an excellent example
of a multi-modal complex network.

Figure 3.6: GitHub data model as a property graph. Screenshot from Neo4j graph
database interface.

The GitHub network is multi-modal in that there are multiple nodes types (primarily
Users and Repositories, or software projects) and multiple edge types (User-User follows,
User-Repository Stars, etc). Figure 3.5 shows a portion of the GitHub data modeled as
a graph. This data model is quite rich, however for the purposes of this paper we will
only concern ourselves with User-User :FOLLOWS and User-Repository :STARS edges.
That simplifies the data model to that shown in Figure 3.8.

1 http://github.com
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Figure 3.7: The GitHub follow graph is a simple graph with User nodes and Follows edges.

3.3.1 Github Archive
Data was collected from GitHub Archive[Gita], a service that maintains an archive of all
public events emitted by the GitHub API[Gitb]. These include events such as creation
of new repositories, pushes to repositories, repository stars, and user follows. Data was
collected for the time period April 1st, 2013 - April 1st, 2014. Table 3.3 shows summary
statistics about the size of the network built from this data. It is important to note that
this data represents only a sample of the network, not the complete GitHub network.

A graph data model is used to represent this data as the data is highly connected:
it is describing entities (users and repositories) and their interactions (stars, follows,
pushes, etc). Figure 3.6 shows an example of a subgraph of user and repository nodes
and the interactions among those entities, modeled as a graph.

FollowEvent
The data collected from GitHub Archive is in the streaming JSON format. An example
of a User-User folow event is shown below:

1 {
2 "created_at": "2013-07-11T15:03:05-07:00",
3 "payload": {
4 "target": {
5 "id": 4602587,
6 "login": "smarquez1",
7 "followers": 1,
8 "repos": 1,
9 "gravatar_id": "42eb6556201588fa7641bf2f0bf615e6"

10 }
11 },
12 "public": true,
13 "type": "FollowEvent",
14 "url": "https://github.com/smarquez1",
15 "actor": "matiasalvarez87",
16 "actor_attributes": {
17 "login": "matiasalvarez87",
18 "type": "User",
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19 "gravatar_id": "0ee1a5bec013545c91ad05c451fb9715",
20 "name": "Matias Alvarez Duran",
21 "company": "NaN Labs",
22 "blog": "http://ar.linkedin.com/pub/matias-emiliano-alvarez-duran/17/39b/

a96",
23 "location": "Argentina",
24 "email": "matiasalvarez87@gmail.com"
25 }
26 }

Listing 3.1: JSON document example of data point - Follow event

WatchEvent (Stars)
User-Repository stars event data is formatted as in this example:

1 {
2 "created_at": "2013-07-11T15:01:56-07:00",
3 "payload": {
4 "action": "started"
5 },
6 "public": true,
7 "type": "WatchEvent",
8 "url": "https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-

Bayesian-Methods-for-Hackers",
9 "actor": "cebe",

10 "actor_attributes": {
11 "login": "cebe",
12 "type": "User",
13 "gravatar_id": "2ebfe57beabd0b9f8eb9ded1237a275d",
14 "name": "Carsten Brandt",
15 "company": "cebe.cc",
16 "blog": "http://cebe.cc/",
17 "location": "Berlin, Germany",
18 "email": "mail@cebe.cc"
19 },
20 "repository": {
21 "id": 7607075,
22 "name": "Probabilistic-Programming-and-Bayesian-Methods-for-Hackers",
23 "url": "https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-

Bayesian-Methods-for-Hackers",
24 "description": "aka \"Bayesian Methods for Hackers\": An introduction to

Bayesian methods + probabilistic programming with a computation/understanding-
first, mathematics-second point of view. All in pure Python ;) ",

25 "homepage": "http://camdavidsonpilon.github.io/Probabilistic-Programming-
and-Bayesian-Methods-for-Hackers",

26 "watchers": 3353,
27 "stargazers": 3353,
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28 "forks": 444,
29 "fork": false,
30 "size": 1264,
31 "owner": "CamDavidsonPilon",
32 "private": false,
33 "open_issues": 21,
34 "has_issues": true,
35 "has_downloads": true,
36 "has_wiki": true,
37 "language": "Python",
38 "created_at": "2013-01-14T07:46:28-08:00",
39 "pushed_at": "2013-07-04T17:08:47-07:00",
40 "master_branch": "master"
41 }
42 }

Listing 3.2: JSON document example of data point - Watch Event

3.3.2 Data Analysis
Table 3.3 shows some descriptive statistics about the GitHub dataset used for this
project. The observed network consists of 1.7 million nodes (this includes both Users
and Repositories) and 10.7 million edges (both User-User follows edges and User-
Repository stars edges.

Table 3.3: Summary statistics for the data collected from GitHub Archive

Count
Num nodes 1,751,605
Num edges 10,740,463
Mean degree 6.13
Num USER nodes 871,382
Num REPO nodes 880,223
Num : FOLLOWS edges 1,120,069
Num : STARS edges 9,620,394
Mean : FOLLOWS degree 1.29
Mean : STARS degree 11.04

As an initial sanity check for exploring the data we compute PageRank for the observed
GitHub network. PageRank is a link analysis algorithm that assigns weights to nodes
in a network based on that nodes relative importance, or centrality in the network.
[Pag] It is similar to a measure of eigenvector centrality. PageRank has the weakness of
only being applicable to a homogenous or single mode network, therefore we apply the
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algorithm to the User-User follows subgraph and the User-Repository stars subgraph
separately. The GraphLab PageRank algorithm implementation is used [GraphLab].

Table 3.4: Here we see the most "central" Users per their PageRank rankings. This is
based on the graph created by user-user follows edges.

User PageRank
funkenstein 413.14
mojombo 300.01
torvalds 248.21
rippleFoundation 220.29
visionmedia 140.52
paulirish 129.59
BYVoid 114.29
schacon 112.17
JakeWharton 110.55
defunkt 106.86
mattt 99.38
worrydream 87.33
hakimel 83.05
pjhyett 80.89
addyosmani 80.59
mbostock 75.63
mdo 70.40
LeaVerou 66.92
tekkub 62.24
nf 60.93

Tables 3.4 and 3.5 show the highest ranked Users and Repositories for the GitHub
data collected.

Table 3.4 shows the results of the PageRank algorithm using User-User follows
relationships only. As a sanity check of the data, we expect the highest ranked Users
to be influential developers in the open-source software development community - the
nodes with highest relative importance in this context. A cursory evaluation of the list
of GitHub usernames confirms that this is indeed the case:

mojombo Tom Preston-Werner, a co-founder and developer of GitHub
torvalds Linus Torvalds, maintainer of the linux operating system kernel
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Table 3.5: Top 20 central GitHub repositories by PageRank.

Repository PageRank
https://github.com/vhf/free-programming-books 455.07
https://github.com/twbs/bootstrap 335.46
https://github.com/jquery/jquery 289.42
https://github.com/resume/resume.github.com 251.99
https://github.com/mandatoryprogrammer/Octodog 233.41
https://github.com/angular/angular.js 202.18
https://github.com/mbostock/d3 149.55
https://github.com/torvalds/linux 133.48
https://github.com/FortAwesome/Font-Awesome 121.47
https://github.com/twitter/bootstrap 111.42
https://github.com/laravel/laravel 106.75
https://github.com/papers-we-love/papers-we-love 102.25
https://github.com/joyent/node 101.27
https://github.com/rethinkdb/rethinkdb 92.34
https://github.com/neovim/neovim 91.52
https://github.com/libgit2/libgit2 90.99
https://github.com/rogerwang/node-webkit 88.23
https://github.com/github/gitignore 88.08
https://github.com/dypsilon/frontend-dev-bookmarks 86.73
https://github.com/zurb/foundation 84.25

paulirish Paul Irish, a well known Google developer
mbostock Mike Bostock, core developer of d3.js a popular JavaScript data visualization

library
mdo Mark Otto, one of the developers of Bootstrap the widely used frontend CSS/-

Javascript framework

These are indeed software developers that could be considered very influential to the
open source software community.

Similarly, Table 3.5 enumerates the 20 most central GitHub software repositories,
according to PageRank. Here we expect to see influential and widely used open-source
software projects. Scanning through the list we are able to identify several widely used
and important projects:
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/twbs/bootstrap Twitter Bootstrap, a popular frontend framework
/angular/angular.js A widely used JavaScript framework developed by Google
/torvalds/linux The linux operating system kernel
/laravel/laravel An enterprise PHP framework
/joyent/node The infamous node.js project

3.4 Implementation

Figure 3.8: The GitHub follow graph is a simple graph with User nodes and Follows edges.

We implement a system capable of generating recommendations using each of the
three methods described above (Jaccard similarity, Triadic Closeness, and an adaptive
hybrid method). This system is written in Java and makes use of the Neo4j graph
database.

3.4.1 Architecture
We design the system to handle large amounts of data, beyond what will fit into memory
on a single machine. When developing such a system the tradeo�s become:

• Complexity of the system. A distributed cluster allows for more e�cient in-
memory processing performance, however at the expense of complexity. Designing
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algorithms for distributed systems is complicated, as is running and maintaining
such systems. If data is to be distributed across multiple instances, ineviatably
there is a tradeo� between data duplication and network latency as highly connected
graph data such as complex networks typically cannot be partitioned completely.

• Memory access. If we make the assumption that the data will not fit into memory,
then we need some sort of persistence layer. Accessing this persistence layer will
dramatically reduce processing performance relative to in-memory computation
and so this persistence layer must be designed to optimize our specific data access
use-cases.

Data collection layer
As mentioned in the previous section, the data for this experiment is collected from
GitHub Archive. One year of events are downloaded for analysis. The data collection
layer handles querying GitHub archive streaming JSON data, filtering for events by
type and converting the data into flat CSV formatted files. These CSV files are then
e�ciently loaded into a Neo4j graph database instance. The data collection layer is
implemented in Python.

Analytics layer
The analytics layer is capable of running link prediction experiments with validation
or generating ad-hoc link predictions for a given user node in the network. Queries to
the embedded Neo4j instance are done using the Cypher query language and are listed
below. The analytics layer is implemented in Java.

1 MATCH (u1:User {name: {u1}}), (u2:User { name:{u2}})
2 MATCH (u1)-[:STARS]->(x:Repo)<-[:STARS]-(u2) WITH x, u1, u2
3 WITH count(x) as intersect, u1, u2
4 //MATCH (u1)-[r:STARS]->(intersection:Repo)<-[:STARS]-(u2) WITH u1, u2,

intersection LIMIT 10
5 //WITH count(intersection) as intersect, u1, u2
6 MATCH (u1)-[r:STARS]->(rest1) WITH u1, u2, intersect, collect(DISTINCT rest1)

AS coll1
7 MATCH (u2)-[r:STARS]->(rest2) WITH u1, u2, collect(DISTINCT rest2) AS coll2,

coll1, intersect
8 WITH u1, u2, intersect, coll1, coll2, length(coll1 + filter(x IN coll2 WHERE

NOT x IN coll1)) as union
9 WITH u1, u2, (1.0*intersect/union) as jaccard

10 RETURN jaccard

Listing 3.3: Cypher query for computing Jaccard similarity

1 // Identify triad pattern
2 // u<->z<->v
3 // to calc TC for u<->v
4 //MATCH (u:User {id: �a�})
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5 //MATCH (z:User {name: �c�})
6 //MATCH (v:User {name: �d�})
7 MATCH (u:User), (z:User), (v:User) WHERE u<>v AND v<>z AND z<>u // for all 3

node combos
8 MATCH (u)--(z)--(v) // find triads only
9 //MATCH (u)-->(v) // closed triads only

10 WITH DISTINCT u, z, v
11 OPTIONAL MATCH t01=(z)-->(u)-->(z)-->(v)-->(z) WHERE NOT (u)--(v)
12 OPTIONAL MATCH t02=(z)-->(u)-->(z)-->(v) WHERE NOT (u)--(v)
13 OPTIONAL MATCH t03=(u)-->(z)-->(v)-->(z) WHERE NOT (u)--(v)
14 OPTIONAL MATCH t04=(u)-->(z)-->(v) WHERE NOT (u)--(v)
15 OPTIONAL MATCH t05=(v)-->(z)-->(u)-->(z) WHERE NOT (u)--(v)
16 OPTIONAL MATCH t06=(u)-->(z)<--(v) WHERE NOT (u)--(v)
17 OPTIONAL MATCH t07=(u)<--(z)-->(v)-->(z) WHERE NOT (u)--(v)
18 OPTIONAL MATCH t08=(v)-->(z)-->(u) WHERE NOT (u)--(v)
19 OPTIONAL MATCH t09=(u)<--(z)-->(v) WHERE NOT (u)--(v)
20 WITH
21 CASE
22 WHEN t01 IS NOT NULL THEN �t01�
23 WHEN t02 IS NOT NULL THEN �t02�
24 WHEN t03 IS NOT NULL THEN �t03�
25 WHEN t04 IS NOT NULL THEN �t04�
26 WHEN t05 IS NOT NULL THEN �t05�
27 WHEN t06 IS NOT NULL THEN �t06�
28 WHEN t07 IS NOT NULL THEN �t07�
29 WHEN t08 IS NOT NULL THEN �t08�
30 WHEN t09 IS NOT NULL THEN �t09�
31 END
32 AS type
33 WITH collect(type) AS types
34 WITH types//, length(types) as triadcount
35 WITH
36 [x IN types WHERE x = �t01� | x] AS t01_c,
37 [x IN types WHERE x = �t02� | x] AS t02_c,
38 [x IN types WHERE x = �t03� | x] AS t03_c,
39 [x IN types WHERE x = �t04� | x] AS t04_c,
40 [x IN types WHERE x = �t05� | x] AS t05_c,
41 [x IN types WHERE x = �t06� | x] AS t06_c,
42 [x IN types WHERE x = �t07� | x] AS t07_c,
43 [x IN types WHERE x = �t08� | x] AS t08_c,
44 [x IN types WHERE x = �t09� | x] AS t09_c
45 RETURN
46 // divide by triadcount for frequency?
47 1.0*length(t01_c) AS t01,
48 1.0*length(t02_c) AS t02,
49 1.0*length(t03_c) AS t03,
50 1.0*length(t04_c) AS t04,
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51 1.0*length(t05_c) AS t05,
52 1.0*length(t06_c) AS t06,
53 1.0*length(t07_c) AS t07,
54 1.0*length(t08_c) AS t08,
55 1.0*length(t09_c) AS t09;

Listing 3.4: Cypher query for computing graph triad pattern frequencies

1 // Identify triad pattern
2 // u<->z<->v
3 // to calc TC for u<->v
4 MATCH (u:User {name: {u} })
5 MATCH (z:User {name: {z} })
6 MATCH (v:User {name: {v} })
7

8 OPTIONAL MATCH t01=(z)-->(u)-->(z)-->(v)-->(z)
9 OPTIONAL MATCH t02=(z)-->(u)-->(z)-->(v)

10 OPTIONAL MATCH t03=(u)-->(z)-->(v)-->(z)
11 OPTIONAL MATCH t04=(u)-->(z)-->(v)
12 OPTIONAL MATCH t05=(v)-->(z)-->(u)-->(z)
13 OPTIONAL MATCH t06=(u)-->(z)<--(v)
14 OPTIONAL MATCH t07=(u)<--(z)-->(v)-->(z)
15 OPTIONAL MATCH t08=(v)-->(z)-->(u)
16 OPTIONAL MATCH t09=(u)<--(z)-->(v)
17

18 WITH
19 CASE
20 WHEN t01 IS NOT NULL THEN �t01�
21 WHEN t02 IS NOT NULL THEN �t02�
22 WHEN t03 IS NOT NULL THEN �t03�
23 WHEN t04 IS NOT NULL THEN �t04�
24 WHEN t05 IS NOT NULL THEN �t05�
25 WHEN t06 IS NOT NULL THEN �t06�
26 WHEN t07 IS NOT NULL THEN �t07�
27 WHEN t08 IS NOT NULL THEN �t08�
28 WHEN t09 IS NOT NULL THEN �t09�
29 END
30 AS type
31 RETURN type

Listing 3.5: Cypher query for triad pattern identification

Evaluation and visualization layer
Prediction results from the analytics layer are fed into the evaluation and visualization
layer. Evaluation metrics are computed and data visualizations are created for evaluation.
This layer is implemented in Python.
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Evaluation

The result of the algorithm is a set of user IDs that are predicted destination nodes,
given a specific source node. These are recommended users that the specified user might
be interested in following.

4.1 Evaluation Metrics
Each method described above in Chapter 3 is evaluated using the same evaluation
metrics for comparison. They are as follows.

4.1.1 Precision
In this context, precision is defined as the number of relevant links predicted divided
by the total number of link predicted. A link is said to be relevant if it is one of the
existing but removed links.

4.1.2 HitRatio@N (Recall)
The other evaluation metric we will use is the HitRatio@N, where N is the number of
predicted links for a given user (at one iteration of the validation). This metric is defined
as the number of users for which at least one correct link was predicted, divided by the
total number of users for which predictions were generated.

4.1.3 Evaluation
The system is evaluated using 200 iterations for validation with di�erent configurations
for N , where N is the number of predicted links generated for each user sampled. At
each validation run a user is selected at random (cross-validation is used to avoid a
statistical bias from users being selected multiple times). Tables 4.1 and 4.2 summarize
the results. We can see that all three methods perform much better than the random
selection baseline. Jaccard similarity does not perform as well as triadic closeness, which
is expected based on the results presented in [Sch14]. Our adaptive ensemble method
however, does not perform any better than the triadic closeness method and for some
configurations performs more poorly than triadic closeness.

29
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Table 4.1: HitRatio@N (%) results for Jaccard similarity (JS), Triadic Closeness (TC)
and adaptive ensemble (AE) methods. Random probability is shown for comparison.

N JS (%) TC (%) AE (%) Random (%)
5 5.51 5.84 10.24 5.738 ◊ 10≠4

10 6.87 12.71 10.15 1.1476 ◊ 10≠3

20 5.83 11.70 6.84 2.2952 ◊ 10≠3

40 4.90 14.41 11.43 4.5904 ◊ 10≠3

50 8.82 9.09 8.11 5.738 ◊ 10≠3

75 4.49 11.54 13.52 8.607 ◊ 10≠3

100 9.47 12.00 7.37 1.14 ◊ 10≠2

250 8.86 10.71 8.33 2.869 ◊ 10≠2

500 12.86 22.86 12.70 5.738 ◊ 10≠2

Table 4.2: Precision (%) results for Jaccard similarity, Triadic Closeness and adaptive
ensemble methods.

N JS TC AE
5 1.178 ◊ 10≠2 1.2084 ◊ 10≠2 2.113 ◊ 10≠2

10 7.43 ◊ 10≠3 1.346 ◊ 10≠2 1.092 ◊ 10≠2

20 3.16 ◊ 10≠3 6.232 29 ◊ 10≠3 3.6363 ◊ 10≠3

40 1.366 ◊ 10≠3 3.9206 ◊ 10≠3 3.2867 ◊ 10≠3

50 2.046 ◊ 10≠3 2.2596 ◊ 10≠3 1.905 97 ◊ 10≠3

75 6.97 ◊ 10≠4 1.757 21 ◊ 10≠3 2.0024 ◊ 10≠3

100 1.152 ◊ 10≠3 1.405 81 ◊ 10≠3 7.989 ◊ 10≠4

250 4.329 ◊ 10≠4 5.798 ◊ 10≠4 4.1694 ◊ 10≠4

500 3.856 ◊ 10≠4 5.874 ◊ 10≠4 3.608 ◊ 10≠4
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(a) Plot of precision results. (b) Violin plot of precision results.

Figure 4.1: Plots comparing precision results for Jaccard similarity, triad closeness and
adaptive ensemble methods.

(a) Plot of HitRatio@N results. (b) Violin plot of HitRatio@N results.

Figure 4.2: Plots of HitRatio@N results for Jaccard similarity, triadic closeness and
adaptive ensemble methods.
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CHAPTER 5
Summary and Outlook

This paper has explored the link prediction problem as applied to complex networks.
An adaptive hybrid method is developed and evaluated against data from the GitHub
network. We find that Jaccard similarity performs much better than the random
benchmark and that Triadic Closeness performs better than Jaccard similarity. The
adaptive hybrid method developed here performs no better than triadic closeness, and
in some cases performs worse.

The relatively poor performance of the adaptive hybrid model could potentially be
improved by adding a normalization process to the weights of each component and
by adding additional components. Due to the structure of the network data used, the
number of relationships observed for each type of relationship (follows and stars) are
disproportional. There are approximately ten times as many stars relationships in
the data set as follows relationships. This skew should be taken into account with a
normalization process to avoid one component of the hybrid model skewing the metric.
Finally, additional components could be added to the hybrid model to improve accuracy.

5.1 Further research
The GitHub network provides a rich data set for analysis. More data from this network
should be included in the data model for the adaptive hybrid method. This could
perhaps improve performance, but also link prediction for other edge types should be
explored.

The methods presented here should be extended to other datasets. Online social
collaboration networks such as AngelList and CrunchBase provide open API access
and data exports for research. These networks provide a rich dataset with data about
the founding of startup companies, employment and venture funding for startups. The
application of the methods presented here could allow for predictions about who will
leave their current jobs to found startups and who will fund them. In fact, data analysts
are already exploring these type of predictions [mattermark].

The system implemented for this paper was designed to be as scalable as possible,
making the assumption that a single machine would be used for analysis (instead of a
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distributed cluster). This design consideration severely limited the performance of such
a system. While it was possible to complete the analysis using the system as designed,
for larger datasets a distributed graph processing engine such as SparkX [sparkx] or
the more recently developed techniques of on-disk processing which take advantage of
performant solid state drives, such as GraphChi [graphChi] should be considered.
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